2,070 research outputs found

    ALTERNATIVE DIRECT INTERPOLATION BOUNDARY ELEMENT METHOD APPLIED TO ADVECTIVE-DIFFUSIVE PROBLEMS WITH VARIABLE VELOCITY FIELD

    Get PDF
    The wide range of physical phenomena of industrial interest which can be properly represented by advection-diffusion transport models motivates a constant effort in the development of new numerical methods capable of dealing with strong advective effects such as compressibility ones. The recent direct interpolation technique (DIBEM) proved to be an accurate and reliable tool for the representation of problems with constant velocity field and initial tests were also performed for problems with variable velocity field, where the results are reasonably satisfactory, but not so robust, since the integral relative to the velocity divergence, in general, seems to disturb the performance of the formulation. The current article presents a new formulation of the direct interpolation technique for solving variable velocity problems with non-zero velocity divergence. The accuracy of the new proposal is measured against a known analytical solution and, also, contrasted with the classical formulation of DIBEM and dual reciprocity technique (DRBEM) for the same case. Preliminary results show that the alternative DIBEM formulation proposed promotes a consistent improvement in precision, outperforming the two techniques in cross-comparison

    Scalable high-resolution forecasting of sparse spatiotemporal events with kernel methods: a winning solution to the NIJ "Real-Time Crime Forecasting Challenge"

    Get PDF
    We propose a generic spatiotemporal event forecasting method, which we developed for the National Institute of Justice’s (NIJ) RealTime Crime Forecasting Challenge (National Institute of Justice, 2017). Our method is a spatiotemporal forecasting model combining scalable randomized Reproducing Kernel Hilbert Space (RKHS) methods for approximating Gaussian processes with autoregressive smoothing kernels in a regularized supervised learning framework. While the smoothing kernels capture the two main approaches in current use in the field of crime forecasting, kernel density estimation (KDE) and self-exciting point process (SEPP) models, the RKHS component of the model can be understood as an approximation to the popular log-Gaussian Cox Process model. For inference, we discretize the spatiotemporal point pattern and learn a log-intensity function using the Poisson likelihood and highly efficient gradientbased optimization methods. Model hyperparameters including quality of RKHS approximation, spatial and temporal kernel lengthscales, number of autoregressive lags, bandwidths for smoothing kernels, as well as cell shape, size, and rotation, were learned using crossvalidation. Resulting predictions significantly exceeded baseline KDE estimates and SEPP models for sparse events

    Dynamics and gravitational wave signature of collapsar formation

    No full text
    We perform 3+1 general relativistic simulations of rotating core collapse in the context of the collapsar model for long gamma-ray bursts. We employ a realistic progenitor, rotation based on results of stellar evolution calculations, and a simplified equation of state. Our simulations track self-consistently collapse, bounce, the postbounce phase, black hole formation, and the subsequent early hyperaccretion phase. We extract gravitational waves from the spacetime curvature and identify a unique gravitational wave signature associated with the early phase of collapsar formatio

    Social cognition in individuals with 22q11.2 deletion syndrome and its link with psychopathology and social outcomes: a review

    Get PDF
    Background: The 22q11.2 deletion syndrome (22q11DS) is a genetic syndrome that results in a highly variable profile of affected individuals of which impairments in the social domain and increased psychopathology are the most prominent. Notably, 25–30% of affected individuals eventually develop schizophrenia/psychosis, predisposing persons with the syndrome to increased risk for this disorder. Because social cognition is considered to underlie social behavior and to be related to psychopathology, this systematic review investigated social cognition in individuals with 22q11DS and examined reported links across its domains with psychopathology and social outcomes. This can provide the basis for a closer understanding of the path from risk to disorder and will inform on the specific domains that can be targeted with preventive intervention strategies. Method: Systematic literature review of studies that reported the links between social cognitive domains and psychopathology and/or social outcomes in individuals with 22q11DS. Electronic databases searched were PubMed and PsycINFO. Results: Defined eligibility criteria identified a total of ten studies to be included in the present review. Selected studies investigated links between two domains of social cognition (emotion processing and theory of mind (ToM)) and psychopathology and/or social outcomes. With respect to the links to psychopathology, two aspects of social cognition were related primarily to negative symptoms. Results regarding the associations to positive and emotional symptoms (anxiety/depression) are limited and require further investigation. Even though both aspects of social cognition were associated with social outcomes, several studies also found no links between these two domains. Both reports invite for an additional examination of reported results and specific considerations regarding chosen constructs. Conclusion: Although equivocal, results of the present review provide sufficient evidence that social cognition is a useful domain for the closer elucidation of clinical outcomes and social difficulties in this population. At the same time, longitudinal studies and consideration of other variables are also necessary for a timely understanding of affected persons in this respect

    Effect of Space Radiation Processing on Lunar Soil Surface Chemistry: X-Ray Photoelectron Spectroscopy Studies

    Get PDF
    Current understanding of the chemistry and microstructure of the surfaces of lunar soil grains is dominated by a reference frame derived mainly from electron microscopy observations [e.g. 1,2]. These studies have shown that the outermost 10-100 nm of grain surfaces in mature lunar soil finest fractions have been modified by the combined effects of solar wind exposure, surface deposition of vapors and accretion of impact melt products [1,2]. These processes produce surface-correlated nanophase Feo, host grain amorphization, formation of surface patinas and other complex changes [1,2]. What is less well understood is how these changes are reflected directly at the surface, defined as the outermost 1-5 atomic monolayers, a region not easily chemically characterized by TEM. We are currently employing X-ray Photoelectron Spectroscopy (XPS) to study the surface chemistry of lunar soil samples that have been previously studied by TEM. This work includes modification of the grain surfaces by in situ irradiation with ions at solar wind energies to better understand how irradiated surfaces in lunar grains change their chemistry once exposed to ambient conditions on earth

    Compositional and Microstructural Evolution of Olivine During Pulsed Laser Irradiation: Insights Based on a FIB/Field-Emission TEM Study

    Get PDF
    Introduction: The use of pulsed laser irradiation to simulate the short duration, high-energy conditions characteristic of micrometeorite impacts is now an established approach in experimental space weathering studies. The laser generates both melt and vapor deposits that contain nanophase metallic Fe (npFe(sup 0)) grains with size distributions and optical properties similar to those in natural impact-generated melt and vapor deposits. There remains uncertainty, however, about how well lasers simulate the mechanical work and internal (thermal) energy partitioning that occurs in actual impacts. We are currently engaged in making a direct comparison between the products of laser irradiation and experimental/natural hypervelocity impacts. An initial step reported here is to use analytical TEM is to attain a better understanding of how the microstructure and composition of laser deposits evolve over multiple cycles of pulsed laser irradiation. Experimental Methods: We irradiated pressed-powder pellets of San Carlos olivine (Fo(sub 90)) with up to 99 rastered pulses of a GAM ArF excimer laser. The irradiated surface of the sample were characterized by SEM imaging and areas were selected for FIB cross sectioning for TEM study using an FEI Quanta dual-beam electron/focused ion beam instrument. FIB sections were characterized using a JEOL2500SE analytical field-emission scanning transmission electron microscope (FE-STEM) optimized for quantitative element mapping at less than 10 nm spatial resolutions. Results: In the SEM the 99 pulse pressed pellet sample shows a complex, inhomogeneous, distribution of laser-generated material, largely concentrated in narrow gaps and larger depressions between grains. Local concentrations of npFe0 spherules 0.1 to 1 micrometers in size are visible within these deposits in SEM back-scatter images. Fig. 1 shows bright-field STEM images of a FIB cross-section of a one of these deposits that continuously covers the top and sloping side of an olivine grain. The deposit has 3 microstructurally distinct sub-layers composed of silicate glass with varying modal fractions and size distributions of npFe( sup 0) spherules, along with nanocrystalline silicate material. A relatively thin (50-300 nm) topmost surface layer has a high-concentration of npFe0 spherules 5-20 nm in size. Element mapping shows the layer to be enriched in Fe by a factor of 2.5 relative to the olivine substrate, with Mg and Si depleted by 20% and 10% respectively. This is compositionally complementary to the underlying, middle layer of the deposit that is depleted in Fe, enriched in Mg and has a much lower npFe0 concentration. A third layer of nanocrystalline olivine occurs at the substrate interface. Discussion: The FE-STEM results suggest the topmost layer is a vapor deposit, underlain by a thicker microstructurally complex melt-generated layer. The compositional relations suggest the melt layer was partially vaporized, preferentially losing more volatile elements (e.g., Fe). The vaporized material re-condensed to form the thin, npFe(sup 0)-rich surface deposit during or immediately after the scan cycle. Nanocrystalline olivine that grew within the melt layer as it formed and cooled is similar in volume and microstructure to what we have observed in the impact melt lining of a micrometeorite impact crater in olivine. This suggest the time-temperature relations attained in the laser sample may not be too different from a micrometeorite impact. Our TEM observations, however, do not show evidence for the same level of mechanical dam-age (e.g., fracturing) seen around the natural micrometeorite crater

    Ciguatera mini review: 21st century environmental challenges and the interdisciplinary research efforts rising to meet them

    Get PDF
    Globally, the livelihoods of over a billion people are affected by changes to marine eco-systems, both structurally and systematically. Resources and ecosystem services, provided by the marine environment, contribute nutrition, income, and health benefits for communities. One threat to these securities is ciguatera poisoning; worldwide, the most commonly reported non‐bacterial seafood‐related illness. Ciguatera is caused by the consumption of (primarily) finfish contaminated with ciguatoxins, potent neurotoxins produced by benthic single‐cell microalgae. When consumed, ciguatoxins are biotransformed and can bioaccumulate throughout the food‐web via complex path-ways. Ciguatera‐derived food insecurity is particularly extreme for small island‐nations, where fear of intoxication can lead to fishing restrictions by region, species, or size. Exacerbating these com-plexities are anthropogenic or natural changes occurring in global marine habitats, e.g., climate change, greenhouse‐gas induced physical oceanic changes, overfishing, invasive species, and even the international seafood trade. Here we provide an overview of the challenges and opportunities of the 21st century regarding the many facets of ciguatera, including the complex nature of this illness, the biological/environmental factors affecting the causative organisms, their toxins, vectors, detection methods, human‐health oriented responses, and ultimately an outlook towards the future. Ciguatera research efforts face many social and environmental challenges this century. However, several future‐oriented goals are within reach, including digital solutions for seafood supply chains, identifying novel compounds and methods with the potential for advanced diagnostics, treatments, and prediction capabilities. The advances described herein provide confidence that the tools are now available to answer many of the remaining questions surrounding ciguatera and therefore protection measures can become more accurate and routine

    Irradiation of FeS: Implications for the Lifecycle of Sulfur in the Interstellar Medium and Presolar FeS Grains

    Get PDF
    Fe(Ni) sulfides are ubiquitous in chondritic meteorites and cometary samples where they are the dominant host of sulfur. Despite their abundance in these early solar system materials, their presence in interstellar and circumstellar environments is poorly understood. Fe-sulfides have been reported from astronomical observations of pre- and post-main sequence stars [1, 2] and occur as inclusions in bonafide circumstellar silicate grains [3, 4]. In cold, dense molecular cloud (MC) environments, sulfur is highly depleted from the gas phase [e.g. 5], yet observations of sulfur-bearing molecules in dense cores find a total abundance that is only a small fraction of the sulfur seen in diffuse regions [6], therefore the bulk of the depletion must reside in an abundant unobserved phase. In stark contrast, sulfur is essentially undepleted from the gas phase in the diffuse interstellar medium (ISM) [7-9], indicating that little sulfur is incorporated into solid grains in this environment. This is a rather puzzling observation unless Fe-sulfides are not produced in significant quantities in stellar outflows, or their lifetime in the ISM is very short due to rapid destruction. The main destruction mechanism is sputtering due to supernova shocks in the warm, diffuse ISM [10]. This process involves the reduction of Fe-sulfide with the production of Fe metal as a by-product and returning S to the gas phase. In order to test this hypothesis, we irradiated FeS and analyzed the resulting material using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM)
    corecore